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Abstract. Structured light is routinely used in free-space optical communication channels, both classical and
quantum, where information is encoded in the spatial structure of the mode for increased bandwidth. Both
real-world and experimentally simulated turbulence conditions have revealed that free-space structured
light modes are perturbed in some manner by turbulence, resulting in both amplitude and phase distortions,
and consequently, much attention has focused on whether one mode type is more robust than another, but
with seemingly inconclusive and contradictory results. We present complex forms of structured light that are
invariant under propagation through the atmosphere: the true eigenmodes of atmospheric turbulence. We
provide a theoretical procedure for obtaining these eigenmodes and confirm their invariance both numerically
and experimentally. Although we have demonstrated the approach on atmospheric turbulence, its generality
allows it to be extended to other channels too, such as aberrated paths, underwater, and in optical fiber.
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1 Introduction
Free-space transmission of electromagnetic waves is crucial in
many diverse applications, including sensing, detection and
ranging, defense and communication, and extends over distan-
ces from the long (Earth monitoring) to the short (WiFi and
LiFi). Lately, there has been a resurgence of interest in free-
space optical links,1,2 driven in part by the need for increased
communication bandwidths,3,4 with the potential to bridge the
digital divide in a manner that is license free.5 Here the spatial
modes of light have come to the fore, for so-called space divi-
sion multiplexing6 and mode division multiplexing,7 where the
spatial structure of light is used as an encoding degree of free-
dom. This in turn has fueled interest in structured light,8,9 where
light is tailored in all its degrees of freedom, including ampli-
tude, phase, and polarization, enabled by a modern structured
light toolkit.10

A commonly used form of structured light is that of beams
carrying orbital angular momentum (OAM), where the phase
spirals around the path of propagation azimuthally.11 These
modes provide a (theoretically) infinite and easily realized

alphabet for encoding information12,13 and have been used exten-
sively in optical communication (see Refs. 14 and 15 for good
reviews). Vectorial combinations of such beams create inhomo-
geneous polarization structures16–18 and also have found appli-
cations in free-space links.19,20 Although these structured light
fields hold tremendous potential for free-space optical commu-
nication, they are distorted by atmospheric turbulence as a phase
perturbation in the near field and an amplitude, phase, and
polarization perturbation in the far field.21 This corrects the myth
that vectorial light is immune to atmospheric turbulence by vir-
tue of its polarization components—it is not. What is invariant is
its vectorness, how inhomogeneous the polarization structure
is (but not how it looks), which can potentially be exploited
for error-free optical communication.22 This modal scattering-
induced cross talk decreases the information capacity of classical
atmospheric transmission channels,23–32 while reducing the degree
of entanglement in quantum links.32–41 Mitigating this remains
an open challenge that has been intensely studied.

Arguments have been put forward for one mode family
being more robust than another, with studies covering Bessel–
Gaussian,42–53 Hermite–Gaussian,54–56 Laguerre–Gaussian (LG),57–61

and Ince–Gaussian62 beams, with mixed and contradictory re-
sults. In the context of OAM, since the atmosphere itself can*Address all correspondence to Andrew Forbes, andrew.forbes@wits.ac.za
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be thought of giving or taking OAM from the beam, it has been
shown theoretically and experimentally that atmospheric turbu-
lence distortions are independent of the original OAM mode,63

all susceptible to the deleterious effects of atmospheric turbu-
lence, and indeed, it has been suggested that OAM is not the
ideal modal carrier through turbulence.64 Vectorial structured
light has been suggested to improve resilience because of the
invariance of the polarization degree of freedom, but numerous
studies in turbulence65–72 have been inconclusive, with some
reporting that the vectorial structure is stable,66,67,72 and others
not.55,68–71 Careful inspection of the studies that report vectorial
robustness in noisy channels reveals that the distances propa-
gated were short and the strength of perturbation was low, mim-
icking a phase-only near-field effect where indeed little change
is expected, and hence these are not true tests for robustness or
invariance. Studies that claim enhanced resilience of vector
modes over distances comparable to the Rayleigh length66,72

have used the variance in the field’s intensity as a measure, a
quantity that one would expect to be robust due to the fact
that each polarization component behaves independently and
so will have a low covariance. This failing of structured light
in turbulence has led to numerous correction techniques, includ-
ing novel encoding/decoding methods,73 modal diversity as an
effective error-reduction scheme,74 traditional adaptive optics for
pre- and postcorrection,75–77 as well as vectorial adaptive tools,78

iterative routines,79 and deep learning models.80

Here we present a class of structured light whose entire struc-
ture in amplitude and phase remains invariant as it propagates
through a turbulent free-space channel. We deploy an operator
approach to find the eigenmodes of atmospheric turbulence, a
significant departure from prior phenomenological approaches.
Unlike other spatial modes, these exotically structured eigenm-
odes need no corrective procedures and are naturally devoid of
deleterious effects, such as modal cross talk. Moreover, they are
valid over long paths and strong aberrations, a regime that is
no longer phase-only, and thus traditional adaptive solutions
for correction fail. We demonstrate this invariance numerically
and confirm it experimentally with a laboratory-simulated
long path comprising weak, medium, and strong turbulence,

implemented using multiple turbulent phase screens along the
propagation path. Our approach offers a new pathway for ex-
ploiting structured light in turbulence and can be easily extended
to arbitrary noisy channels.

2 Eigenmodes of Turbulence

2.1 Instantaneous Eigenmodes

The concept we tackle here is illustrated in Fig. 1(a). Some op-
tical field passes through an arbitrary distance of atmospheric
turbulence and is treated as a continuous medium of potentially
strong turbulence, which we will refer to as our channel. The
conventional forms of structured light, such as LG beams are
typically distorted after propagation through such a channel
but are invariant to unperturbed free space. In contrast, the ei-
genmodes of the medium are complex forms of structured light
that are invariant to the channel, emerging distortion-free but
then are not eigenmodes of unperturbed free space.

In our approach to the problem, we treat the channel as an
operator, Û that acts on the input field to return an output field,
namely,

Ûuin ¼ uout: (1)

This is illustrated in Figs. 1(b) and 1(c), with the operator
and input/output fields shown schematically (note that in the
absence of turbulence the operator just describes free space).
The operator is unitary if the transmitting and receiving
apertures are sufficiently large to accommodate the number
of eigenmodes utilized, which can be approximated by its
free-space limit of Nmax ≈ AtAr∕ðλ2L2Þ, where At and Ar are
the transmitter and receiver aperture areas separated by a
distance L for light of wavelength λ. Equation (1) can be recast
as an eigenvector problem by insisting that uin ¼ uout ¼ jγi
so that

Û ¼
X
i

sijγiihγij: (2)

Fig. 1 Propagation through turbulence: (a) most common forms of structured light (such as
Laguerre–Gaussian modes) become distorted when propagating through free space due to the
effects of atmospheric turbulence, whereas an eigenmode of atmospheric turbulence will remain
unchanged when propagating through the same channel. (b), (c) In contrast, the eigenmodes of
turbulence will not be the eigenmodes of pristine free space.
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The challenge is to find these eigenvectors jγii by decompo-
sition of the channel operator as a transmission matrix with el-
ementsUij that maps the input to the output, i.e., ui ¼

P
jUijuj.

This is a variant of singular value decomposition (SVD), which
solves the eigenvector equation at two planes for two different
sets of modes.81 This ensures orthogonality at the receiver by
allowing the optical fields to evolve in transmission, say from
modes jϕii at the transmitter to jψ ii at the receiver, but at the
expense of invariance. We wish to find the modes that are invari-
ant (robust) to the channel, the true eigenmodes of the channel,
so that transmitter and receiver share a common mode set.
Because of the unitarity of the problem, the eigenvector equa-
tion is numerically stable and can be solved by a variety of stan-
dard numerical tools, so the task is to decompose the channel
operator as matrix elements. There are a variety of approaches to
do this, with successful theoretical demonstrations including
using SVD in turbulence with OAM and pixel modes at the
transmitter and receiver,82,83 and experimental demonstrations
using point sources for eigenmodes of scattering media.84,85

In the language of quantum mechanics, the nature of the prob-
lem lends itself to a process tomography of the channel,86 which
by the isomorphism of channel and state means that a quantum
state tomography87 will completely retrieve the channel matrix,
as shown in quantum channels of complex optical fiber88 as well
as in channels through turbulence.89,90 We believe that this is
a promising avenue to explore, as it may offer benefits over
the classical approach, which typically probes the channel one
mode at a time. Nevertheless, the point is that standard tools
exist to tackle the problem both experimentally and computa-
tionally.

In our work, we will use the pixel basis to express the
eigenmodes, inspired by the form of the paraxial free-space
Green’s function. The channel tomography, however, can be
done in any complete and orthogonal basis for sending and
receiving modes, to reconstruct a channel matrix A ¼ PUQ†,
where P and Q are the unitary matrices that perform the basis
transformations, which, following the earlier example, might be
Q ¼ P

pjϕpihγpj and P ¼ P
qjψqihγqj, from which U can be

again deduced.

2.2 Time-Averaged Eigenmodes

The analysis in the previous section assumed that the channel
matrix was fixed at some instant in time, or equivalently, that the
light transit time is much shorter than the coherence time of
the turbulence. It is instructive to consider what might happen
if one instead considers a time-averaged result. Turbulence is
a stochastic process in which the refractive index of the Earth’s
atmosphere varies according to well-known statistics, having
zero mean and some nonzero variance. To see the impact of
averaging over many different instances of turbulence on the
robustness of modes, we use the Helmholtz equation in the
nonparaxial form through a thick and varying medium defined
by the function δnðrÞ,

ð∇2 þ k2ÞV ¼ −2k2δnV; (3)

which has the solution

Vðr0Þ ¼ 2k2
Z

d3rGðr; r0ÞVðrÞδnðrÞ; (4)

with Gðr; r0Þ ¼ expðikkr − r0kÞ∕4πkr − r0k being the free-
space Green’s function and r ¼ ðx; zÞ. Taking the ensemble
average and using the result that hδnVi ¼ AhVi,91 we find

hVðr0Þi ¼ 2k2A
Z

d3rGðr; r0ÞhVðrÞi; (5)

where the constant A is related to the covariance of the refrac-
tive index fluctuations. We recognize that Eq. (5) is identical to
the usual, zero-turbulence Fresnel integral, up to a constant.
Therefore, the averaged eigenmodes should be solutions to
the free space, no turbulence, case. In other words, if the channel
involves some form of averaging, say at the detector, then the
best mode set in this case is identically the traditional free-space
modes in various geometries, e.g., the Hermite–Gaussian and
LG modes.

3 Numerical Simulation: Multiple Phase
Screen Example

Conceptually, one can imagine that the real path through turbu-
lence is subdivided into many units, each containing a single
phase-only turbulent screen and a zero turbulence propagation
path of length Δz. We realize that in the language of operators,
the action of each unit on some field is given by the product of
the operators for turbulence and free-space propagation, which
we denote by T . This picture serves to confirm that the complete
channel operator can be treated as unitary, since it can be written
as a product of unitary operators. We will now use this approach
by way of example to build up a turbulence operator for the
long/thick medium because (in the absence of a real-world chan-
nel) it lends itself directly to numerical testing and experimental
verification of the concept in the laboratory.

To begin, we note that the effects of turbulence are mathemati-
cally captured in the stochastic refractive index n ¼ 1þ δn,
where δn is the random variation in the refractive index of
the Earth’s atmosphere. It is assumed that δn has a zero mean
value, i.e., hδni ¼ 0, and that the variation is small, so jδnj ≪ 1.
The introduction of this varying term produces the stochastic
paraxial Helmholtz equation for a field Vðx; y; zÞ,

ð∇2
t þ 2ik∂z þ 2k2δnÞV ¼ 0; (6)

where ∇2
t is the transverse Laplacian, and k ¼ 2π∕λ is the wave-

number for wavelength λ.
Equation (6) can be solved numerically according to the

split-step method,92 illustrated in Fig. 2. Multiple random phase
screens are placed at various distances along the beam’s propa-
gation path. Importantly, each screen is in the weak turbulence
limit and contributes a random phase Θj, where j labels the j’th
screen, so that a single screen approximation is valid, but the
sum of many such screens can lead to medium or even strong
turbulence. In general, the screens at each distance are different,
but for pedagogical reasons, we start with a simple example
(to illustrate the concept) where we imagine that the path is sub-
divided into identical units, each containing such a single screen
and a zero turbulence propagation path of length Δz. The action
of T on a field V is given by the Huygen–Fresnel integral with
a turbulent phase factor,

T V ≡
Z

d2xgðx; x0;ΔzÞ expðiΘÞVðx; z ¼ 0Þ; (7)
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where

gðx; x0;ΔzÞ ¼ 1

iλΔz
exp

�
iπ
λΔz

kx − x0k2
�

(8)

is the paraxial free-space Green’s function and x, x0 are the
two-dimensional coordinates of the initial and final planes,
respectively. We then discretize x and x0 into grids of N × N
points. The coordinates are labeled x ≡ ðxα; yβÞ and x0 ≡ ðxμ; yνÞ,
so that T is given by

T μναβ ¼
1

iλΔz
exp

�
iπ
λΔz

ðxμ − xαÞ2
�

× exp

�
iπ
λΔz

ðyν − yβÞ2
�
expðiΘðxα; yβÞÞ: (9)

An eigenmode E is then a solution to the tensor eigenvalue
equation,

γnEn
μν ¼ T μναβEn

αβ; (10)

where γn is the eigenvalue of the n’th eigenmode. Repeated
indices are implicitly summed over and Eμν ≡ Eðxμ; yνÞ.
To convert the above tensor equation into the usual matrix–
vector form, we specify a mapping ρ that acts on the indices
ðα; βÞ and ðμ; νÞ and “counts” them, first by columns and
then by rows, such that ρð1, 1Þ ¼ 1;…; ρðN; 1Þ ¼ N; ρð1, 2Þ ¼

N þ 1 up to ρðN;NÞ ¼ N2. This mapping lets us rewrite
Eq. (10) as

γnEn
i ¼ T ijEn

j ; (11)

since ρðα; βÞ ¼ j and ρðμ; νÞ ¼ i. This equation can be rou-
tinely solved using numerical methods to find the eigenmodes
of the unit cell operator. The action of the full channel is then
described by the product T n…T 1 of repeated unit cells, and
as per the definition of eigenmodes, they remain invariant,
regardless of the number of operators applied. To simulate
more realistic conditions that change from cell to cell, the indi-
vidual operators can be set appropriately so that in general
T n ≠ T nþ1, but the product of operators still holds true.

3.1 Numerical Results

We follow the split-step approach shown in Fig. 2 to calculate
the eigenmodes and numerically propagate them through atmos-
pheric turbulence. For clarity and brevity, we show only the
low-order eigenmodes and use the OAM modes as our point of
comparison. We describe the turbulence conditions by Fried’s
parameter r0 ¼ ð0.423k2C2

nLÞ−3∕5 and the Rytov variance
σ2R ¼ 1.23C2

nk7∕6L11∕6 using the plane-wave approximations93

over a path of length L. These parameters are given in the
captions of all results.

Examples of the intensity and phase of the eigenmodes are
shown in Fig. 3 for various examples of turbulence. Here the
first five eigenmode solutions are shown in Fig. 3, increasing

Fig. 2 The unit cell: the first turbulent screen is placed at the beginning of the channel, at z ¼ 0,
with subsequent screens placed a distance Δz ¼ L∕N away from the prior, where N is the number
of turbulent phase screens used. Each phase screen and distance form a unit cell, the first high-
lighted in blue, forming N unit cells over the complete path length of z ¼ L. The operator for each
unit cell T is identical, so we need only consider the first unit cell. The initial plane is discretized into
pixels with side length δ, and turbulence is simulated with a strength characterized by the ratio
D∕r0, where D is the aperture of the inscribed circle and r0 is the Fried parameter. The operator
describes the action of an imprinted turbulent phase on the beam, followed by vacuum propaga-
tion over a distance Δz.
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from left to right, with the rows corresponding to the turbulence
strength, increasing from top to bottom. Although these are
complex forms of structured light, as eigenmodes of turbulence
they should be invariant after propagation through a turbulent
atmosphere. To test this, we propagate OAM carrying LG
modes and the eigenmodes through various scenarios of turbu-
lence over a 100-m path length, with the results shown in Fig. 4.
OAM modes were selected, as they are very popular forms of
structured light used in free-space studies. Their popularity,
however, is not commensurate with their robustness in turbu-
lence, as their phase profiles are sensitive to atmospheric distor-
tions. We see that while the OAM modes are distorted (as
expected), the eigenmodes are robust. This can be quantified
by performing a modal analysis94 at the end of the turbulent
channel, as would be the case in optical communication at
the receiver. In Fig. 5, we see that while the cross talk is sub-
stantial for OAM modes when propagated through turbulence,
evident from the many off-diagonal terms, the eigenmode cross-
talk matrix remains diagonal after the same channel, for minimal
cross talk. It is useful to study the behavior of the eigenmodes of
turbulence as they propagate through a channel with no turbu-
lence and that is absent of any other perturbations. LG and
Hermite–Gaussian modes are eigenmodes of such a channel
and thus will propagate through it unperturbed. This can be seen
in Fig. 6(a) where several LG modes of increasing OAM numeri-
cally propagate through a 100 m free-space channel and show
no aberrations. The eigenmodes of weak, medium, and strong
turbulence [in Figs. 6(b)–6(d), respectively] are also propagated
through this channel. They show very noticeable changes in

their intensity distributions, thus demonstrating that they are not
eigenmodes of free space. However, the change they undergo in
free space is not so significant as to make them unrecognizable,
and they retain many of their original features, such as a general
pattern and the number of lobes. When comparing this to Fig. 4,
it appears that the changes undergone by eigenmodes of turbu-
lence in free space are less severe than changes undergone by
the eigenmodes of free space in turbulence.

Real-world turbulent channels have differing unit cells and
to illustrate such an example, we simulate a slant path from
high altitude to the Earth’s surface. In this case, the turbulence
strength changes as a function of altitude, and likewise, the
phase screen in each cell changes.

The starting altitude of the channel was 500 m and the zenith
angle was 170 deg (the zenith angle is >90 deg, as we are
propagating downward from a point of high altitude to the sur-
face of the Earth). This corresponds to a path length of 508 m
and an angle of 80 deg below the horizontal. To calculate the
turbulence strength at each altitude, the Tartarski model95 was
used to calculate the values for the refractive index structure
constant,

C2
nðhÞ ¼ C2

n0h
−b; (12)

where C2
n0 ¼ 4.16 × 10−13 m2∕3 and b ¼ 4∕3 are constants se-

lected to most closely fit experimental data and h is the altitude.
The slant path length through the atmospheric layer is given by
Δl2i ¼ Δh2i þ Δz2i , where Δh2i is the height of the atmospheric

Fig. 3 Eigenmodes of turbulence: the numerically calculated eigenmodes of turbulence, showing
the first five modes (columns) as a function of turbulence strength (rows). The insets show the
phase profile. All eigenmodes were calculated for a total propagation path of 100 m through weak,
medium, and strong turbulence as defined by the Rytov variance (σ2R ) and Fried parameter (r0).
The first two rows show eigenmodes of weak turbulence with σ2R ¼ 0.5 and r0 ¼ 1.8 mm. The next
two rows show eigenmodes of medium turbulence with σ2R ¼ 1 and r0 ¼ 1.2 mm. The last row
shows eigenmodes of strong turbulence with σ2R ¼ 1.5 and r 0 ¼ 0.91 mm.
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layer and Δz2i is the horizontal component of the beam’s path
through the layer; the channel was broken up into 14 unit cells.
The phase screens were then distributed evenly along the path,
and the values for C2

ni were calculated for each phase screen at
the position of each phase screen. The calculated eigenmodes
for this example are shown in Fig. 7, where we see some striking
similarity to low-order superpositions of the free-space modes.
More importantly, we note that the before and after intensity
structures are in good agreement, indicative of an eigenmode.

4 Experimental Results
The experiment, shown in Fig. 8, is conceptually divided into
three parts. In the generation stage, a He–Ne laser beam (wave-
length λ ¼ 633 nm) was expanded using a 10× objective lens
L1 and then collimated by L2 (f2 ¼ 150 mm) before being
directed onto a reflective PLUTO-VIS HoloEye spatial light
modulator (SLM). The initial field was generated using the
Arrizón type 3 technique96 to shape the incident beam into the

desired mode by complex amplitude modulation (amplitude and
phase control). This field then entered the turbulent section
of the setup, where it passed through three unit cells, each
comprising the same random phase screen and a propagation
distance of 1 m. The same phase screen was repeated for ease
of calculation. In a real-world channel, the phase screens would
not be correlated; however, the method would still remain
unchanged, as demonstrated in the previous section. The phase
screens were generated using the subharmonic random matrix
transform method92 and displayed on the (phase-only) SLMs.
The intensity of the perturbed field was then detected and
measured on a camera (CCD). The experimental setup in Fig. 8
shows four examples of the desired (calculated) eigenmodes, the
holograms to create them by complex amplitude modulation,
and the experimental validation that, without any turbulence or
propagation, they are created (generated eigenmodes) with high
fidelity.

Our setup differs from conventional laboratory simulations of
turbulence in that we are able to mimic a thick path, from weak

Fig. 4 Invariance of eigenmodes under numerical propagation through turbulence. The (a) ei-
genmodes and (b) LG modes after numerical propagation through weak, medium, and strong
turbulence through a channel equivalent to propagating over a distance of 100 m. The insets
show the modes before experiencing turbulence. The numerical simulations used the split-step
method with three unit cells each consisting of a turbulence screen with a given r0 followed by
33.33 m of propagation. Weak turbulence was characterized by σ2R ¼ 0.5 and r0 ¼ 1.8 mm,
medium turbulence by σ2R ¼ 1 and r0 ¼ 1.2 mm, and strong turbulence by σ2R ¼ 1.5 and
r0 ¼ 0.91 mm.
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to strong turbulence, whereas often only a single-phase screen is
used, allowing only weak turbulence to be tested. Using our
setup, we studied an effective real-world channel of L ¼ 100 m,
at our wavelength of λ ¼ 633 nm and with Rytov variances of
σ2R ¼ 1.5, 1, and 0.5, corresponding to strong, medium, and
weak turbulence, with Fried parameters (r0) of 0.47, 0.62, and
0.93 mm, respectively. We required three screens for each
turbulence strength, separated by a distance of 33.3 m, each
with effective Fried parameters r0;s ¼ 0.9, 1.2, and 1.8 mm,
while maintaining a Rytov variance in each slab (segment of
the channel) to be smaller than 0.9, 0.6, and 0.3, respectively.
This channel was simulated on the setup shown in Fig. 8 using
the Fresnel scaling procedure,97 allowing a long path to be
generated within laboratory distances. The scaling factors were
chosen to be: αx ¼ αx0 ¼

ffiffiffiffiffiffiffiffiffi
0.03

p
≈ 0.173 and αz ¼ 0.03. This

corresponded to a total path length of L0 ¼ 3 m and segment
Fried parameters of r0;s ¼ 0.081, 0.11, and 0.16 mm (see
Appendix for details).

The results of OAM and the eigenmodes for weak, medium,
and strong turbulence are shown in Fig. 9. The collage shows
the final measured eigenmodes after the channel, with the insets
showing the initial mode as prepared prior to the channel. The
robustness of the eigenmodes is clearly evident, in contrast to
the highly distorted OAM modes.

5 Discussion
We have outlined how to find the eigenmodes of a turbulent
path and demonstrated it with a laboratory-based split-step
example both numerically and experimentally. These modes are
eigenmodes in their truest sense, i.e., they are fixed under the
action of the channel. Importantly, our approach works even
when the medium is long and the aberration strong, a regime
where traditional adaptive optics often fails (beyond a Rytov
variance of order 1).98,99

A natural feature of the eigenmodes is that they are channel-
specific. To be useful in a real-world setting, the transmission
should be faster than the coherence time of the turbulence.
For typical turbulence conditions, this is always true, with the
atmosphere changing on millisecond time scales (typically 1 to
10 ms), whereas the transport of light across kilometer-length
scales is on the order of nanoseconds. The turbulence thus
appears frozen, and numerical simulations on singular value
modes have shown that they outperform adaptive solutions,
even in dynamic turbulence.100 The time frames of acquiring
the information to deduce the eigenmodes can be very fast.
A tomography of the channel can be done by modal decompo-
sition in any basis94 with projective holograms, which with dig-
ital micromirror devices (DMDs) and photodiodes can certainly
be done on millisecond time scales. This can be improved down
to microseconds (limited by the response of fast photodiodes)
if the projective holograms are hard-coded, such as on a dif-
fractive optical element or metasurface, possibly because the

Fig. 6 Eigenmodes of turbulence through an unperturbed, uni-
form medium. (a) The Laguerre–Gaussian modes propagate
through free-space unaberrated, as they are solutions to the
free-space paraxial Helmholtz equation. The eigenmodes of
(b) weak, (c) medium, and (d) strong turbulence, while still
recognizable, show noticeable changes when passing through
a channel with no turbulence. The insets show the modes
before propagation, and the larger images show the modes after
propagation through a 100-m free-space channel with no turbu-
lence. Weak turbulence was characterized by σ2R ¼ 0.5 and
r0 ¼ 1.8 mm, medium turbulence by σ2R ¼ 1 and r0 ¼ 1.2 mm,
and strong turbulence by σ2R ¼ 1.5 and r0 ¼ 0.91 mm.

Fig. 5 Cross-talk-free transmission: simulated cross-talk matri-
ces for OAM (a) modes l ∈ ½0,4� and (b) eigenmodes with insets
showing the intensity of the beams. The eigenmodes are
unchanged and remain orthogonal, whereas the OAM modes
scatter into each other. Turbulence results shown for D∕r0 ¼ 2
with a total path length of 100 m and a beam waist parameter
for the OAM beams of w0 ¼ 6.67 mm.
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Fig. 7 Eigenmodes of a slant path: (a) the initial eigenmodes and (b) those after propagation
through a slant path toward the ground. The invariance is clear, with the before and after intensity
structures remarkably similar. We also note the strong similarity to free-space modes because
the turbulence conditions were moderate.
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channel does not have to be probed in the basis of eigenmodes.
Further, one can surmise that machine learning would be ideally
suited to the task of anticipating the new eigenmodes in
a dynamical system given the prior set, certainly appealing if
the conditions are slowly changing. We take some confidence
from the fact that such channel analysis is needed in multiple
input multiple output (MIMO) as well as in SVD approaches,
both of which have been applied to nonturbulence studies al-
ready with success. Nevertheless, it is a challenge that should
not be downplayed and is certainly deserving of a full exper-
imental study. We point out that turbulence was used here only
as an extreme example, whereas the formulation of the idea is
such that it will work for any long path in complex media, for
instance, turbid, underwater, optical fiber, or thermally aber-
rated paths, all of which may change more slowly or not at
all. Our analysis only considered scalar modes, whereas it is
clear that vectorial superpositions would also be eigenmodes of
this channel. In this way, the invariance of the inhomogeneity of
vectorial light in complex channels21 could be generalized to

the invariance of all properties of the field, an appealing
notion for energy transport and imaging through complex
systems.

6 Conclusion
The search for robust states of structured light in noisy chan-
nels is a pressing challenge, promising enhanced channel
capacity and reach. Here using free-space and atmospheric
turbulence as our example, we have outlined a theoretical
approach to finding the complex forms of structured light
which are invariant under propagation through the atmosphere,
the true eigenmodes of turbulence, and confirmed its validity
both numerically and experimentally. These exotically struc-
tured eigenmodes need no corrective procedures, are naturally
devoid of deleterious effects, and are valid over any path
length in the medium. Our approach offers a new pathway
for exploiting structured light in turbulence and can be easily
extended to other noisy channels, such as underwater and op-
tical fiber.

Fig. 8 Experimental setup: lenses L1 and L2 expand and collimate a laser beam onto an SLM, in
which a phase-only hologram of the initial beam is displayed, but implementing amplitude and
phase control by complex amplitude modulation. The ideal, turbulence-free beam is generated
at this plane and subsequently propagates through three turbulent screens, which are also
displayed on SLMs, one example shown as an inset, each followed by 1 m of free-space
propagation. The final aberrated field is captured on a CCD to image its intensity. Examples
of the desired eigenmodes (calculated eigenmodes), the holograms to create them, and the
measured eigenmodes without any turbulence or propagation (generated eigenmodes) are
shown in the insets.

Klug, Peters, and Forbes: Robust structured light in atmospheric turbulence

Advanced Photonics 016006-9 Jan∕Feb 2023 • Vol. 5(1)



7 Appendix
Some channel parameters, such as path length, are highly
restricted in the laboratory setting. This presents an apparent
difficulty in experimentally verifying the eigenmodes. However,
a scaling procedure exists97 that allows us to verify real-world
channels in the laboratory. This procedure is presented below.

The Fresnel integral for the full (real-world) channel of
length L is

Ufðr; LÞ ¼
expðikLÞ

iλL

Z
d2r0Uiðr0Þ exp

�
iπ
λL

kr − r0k2
�
: (13)

We then apply the following scaling parameters: rlab ¼
αxr; r0lab ¼ αr0r0, and L0 ¼ αzL, where rlab and r0lab are the co-
ordinates used in the experiment. The diffraction integral be-
comes

Uf

�
rlab
αr

�
¼ expðikL0∕αzÞ

iαr0λL0

Z
d2r0labUi

�
r0lab
αr0

�

× exp

�
iπαz
λL0

���� rlabαr
− r0lab

αr0

����
2
�
: (14)

To keep the diffraction equivalent with these scaled coordi-
nates, we require the Fresnel number,

F ¼ πDiDf

4λL
(15)

to be the same in both the full and scaled-down cases, whereDi and
Df are the aperture diameters in the initial and final planes, respec-
tively. This sets αrαr0 ¼ αz, and the diffraction integral becomes

exp
�
ikL0

�
1− 1

αz

��
αr

Uf

�
rlab
αr

�
¼ exp

�
− iπr2lab

λfr

�
expðikL0Þ

iλL0

×
Z

d2r0labUi

�
r0lab
αr0

�
exp

�
−πðr0labÞ2

λfr0

�
exp

�
iπ
λL0 krlab− r0labk

�
;

(16)where

fr ¼
L0

1 − αr0∕αr
; (17)

fr0 ¼
L0

1 − αr∕αr0
: (18)

Setting αr ¼ αr0 means that the final and initial planes have
the same size in the laboratory setting and fr;r0 → ∞. Ignoring
constant phase factors that arise due to scaling, the final Fresnel
integral becomes

Uf

�
rlab
αr

�
¼ αr expðikL0Þ

iλL0

Z
d2rlabUi

�
r0lab
αr0

�

× exp

�
iπ
λL0 krlab − r0labk

�
: (19)
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